

A252606


Numbers n such that n + 2 divides 2^n + 2.


2



3, 4, 16, 196, 2836, 4551, 5956, 25936, 46775, 65536, 82503, 540736, 598816, 797476, 1151536, 3704416, 4290771, 4492203, 4976427, 8095984, 11272276, 13362420, 21235696, 21537831, 21549347, 29640832, 31084096, 42913396, 49960912, 51127259, 55137316, 56786087, 60296571, 70254724, 70836676
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that (2^n + 2)/(n + 2) is an integer. Numbers n such that (2^n  n)/(n + 2) is an integer.
From Robert Israel, Apr 09 2015: (Start)
The even members of this sequence (4, 16, 196, 2836, ...) are the numbers 2*k2 where k>=3 is odd and 4^k == 8 (mod k).
The odd members of this sequence (3, 4551, 46775, 82503, ...) are the numbers k2 where k>=3 is odd and 2^k == 8 (mod k). (End)
2^m is in this sequence for m=(2, 4, 16, 36, 120, 256, 456, 1296, 2556,...), with the subsequence m=2^k, k=(1, 2, 4, 8, 16, ...).  M. F. Hasler, Apr 09 2015


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..78


EXAMPLE

3 is in this sequence because (2^3 + 2)/(3 + 2) = 2.


MAPLE

select(t > 2 &^t + 2 mod (t + 2) = 0, [$1..10^6]); # Robert Israel, Apr 09 2015


MATHEMATICA

Select[Range[10^6], IntegerQ[(2^#+2)/(#+2)]&] (* Ivan N. Ianakiev, Apr 17 2015 *)


PROG

(MAGMA) [n: n in [0..1200000]  Denominator((2^n+2)/(n+2)) eq 1];
(PARI) for(n=1, 10^5, if((2^n+2)%(n+2)==0, print1(n, ", "))) \\ Derek Orr, Apr 05 2015
(PARI) is(n)=Mod(2, n+2)^n==2 \\ M. F. Hasler, Apr 09 2015
(Python)
A252606_list = [n for n in range(10**4) if pow(2, n, n+2) == n] # Chai Wah Wu, Apr 16 2015


CROSSREFS

Cf. A001477, A004273, A004275, A081765, A213382, A251603.
Sequence in context: A300316 A329546 A057542 * A248240 A110983 A100560
Adjacent sequences: A252603 A252604 A252605 * A252607 A252608 A252609


KEYWORD

nonn,more,hard


AUTHOR

JuriStepan Gerasimov, Mar 03 2015


EXTENSIONS

a(17)a(22) from Tom Edgar, Mar 03 2015
More terms from Chai Wah Wu, Apr 16 2015


STATUS

approved



